# my code stock.com # Housing pricing prediction using linear regression by aravindh ram

### Snippet options

Copy snippet: For this you need a free my code stock.com account.
Embed code : You will find the embed code for this snippet at the end of the page, if you want to embed it into a website or a blog!

```#
# The data contains the following columns:
#
# * 'Avg. Area Income': Avg. Income of residents of the city house is located in.
# * 'Avg. Area House Age': Avg Age of Houses in same city
# * 'Avg. Area Number of Rooms': Avg Number of Rooms for Houses in same city
# * 'Avg. Area Number of Bedrooms': Avg Number of Bedrooms for Houses in same city
# * 'Area Population': Population of city house is located in
# * 'Price': Price that the house sold at
# * 'Address': Address for the house

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')

USAhousing.info()

USAhousing.describe()

USAhousing.columns

sns.pairplot(USAhousing)

sns.distplot(USAhousing['Price'])

sns.heatmap(USAhousing.corr())

X = USAhousing['Avg. Area Number of Bedrooms'].values.reshape(-1,1)
pd.options.display.float_format = '{:,.2f}'.format
y = USAhousing['Price'].values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)

from sklearn.linear_model import LinearRegression

lm = LinearRegression()

lm.fit(X_train,y_train)

y_train_pred=lm.predict(X_train)
y_test_pred=lm.predict(X_test)

plt.figure(figsize=(12,8))
plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data')
plt.scatter(y_test_pred, y_test_pred - y_test, c='orange', marker='*', label='Test data')
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
plt.xlim([1.593866e+04, 6.593866e+04])
plt.ylim([-5, 35])
plt.show()

print(lm.intercept_)

coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
coeff_df

plt.scatter(y_test,predictions)

sns.distplot((y_test-predictions),bins=50);

from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))

```

### Create a free my code stock.com account now.

my code stok.com is a free service, which allows you to save and manage code snippes of any kind and programming language. We provide many advantages for your daily work with code-snippets, also for your teamwork. Give it a try!

You can customize the height of iFrame-Codes as needed! You can find more infos in our API Reference for iframe Embeds.